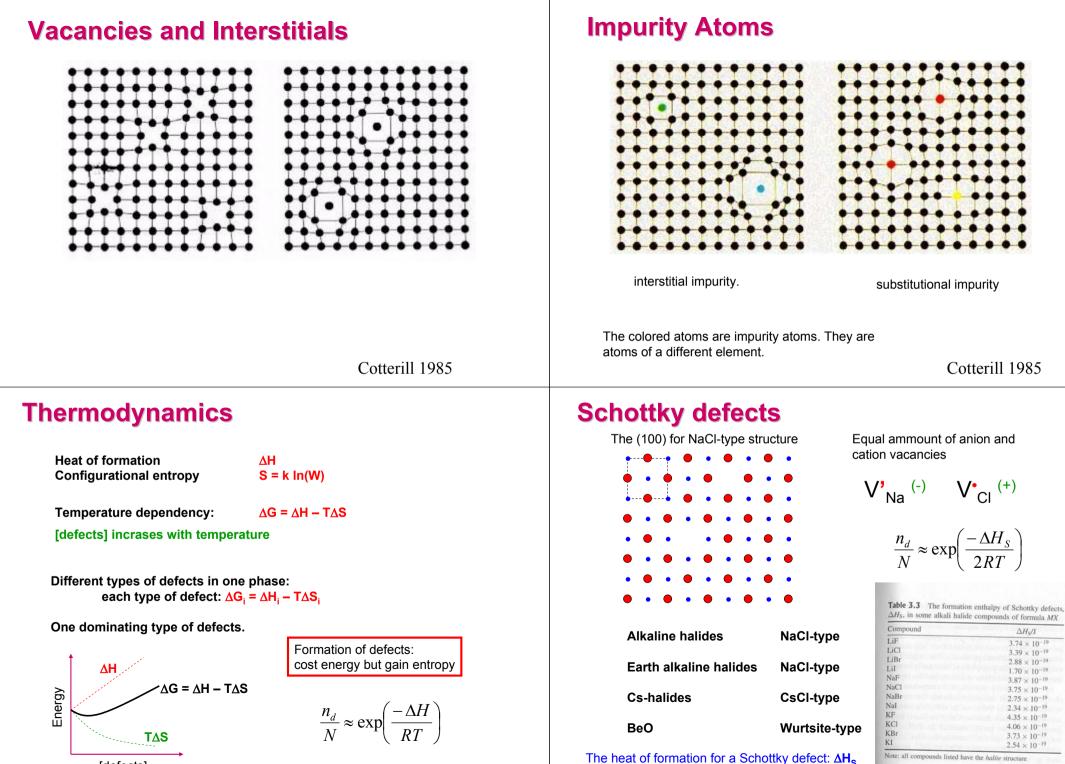
Kap. 3 States of aggregation

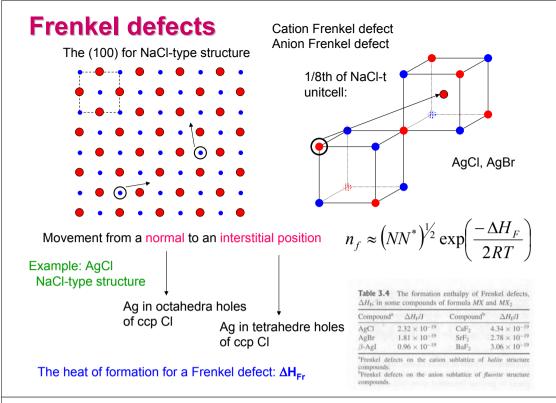
Defects


Perfect Crystal


•A perfect crystal with every atom in the correct position does not exist. Only a hypothetical situation at 0 K

•"Crystals are like people: it is the defects in them which tend to make them interesting!" - Colin Humphreys

•Most materials properties are determined by the crystal defects present.


Defects

Note: all compounds listed have the halite structure

[defects]

Thermodynamics

Scottky defect

$$Na_{Na} + Cl_{Cl} + V_{Na,S} + V_{Cl,S} \Leftrightarrow V'_{Na} + V_{Cl}^{\bullet} + Na_{Na,S} + Cl_{Cl,S}$$
Constant

$$K = \begin{bmatrix} V'_{Na} \\ Na_{Na} \end{bmatrix} \begin{bmatrix} V_{Cl} \\ Na_{Na} \end{bmatrix} \begin{bmatrix} Na_{Na,S} \\ Cl_{Cl,S} \end{bmatrix} \longrightarrow K = \begin{bmatrix} V'_{Na} \\ Na_{Na} \end{bmatrix} \begin{bmatrix} V_{Cl} \\ Na_{Na} \end{bmatrix} \begin{bmatrix} V_{Cl} \\ Cl_{Cl} \end{bmatrix}$$
Constant

$$K = \frac{(N_V)^2}{(N - N_V)^2} \qquad K \propto e^{(-\Delta G/RT)}$$

$$K \propto e^{(-\Delta H/RT)}e^{(\Delta S/R)}$$

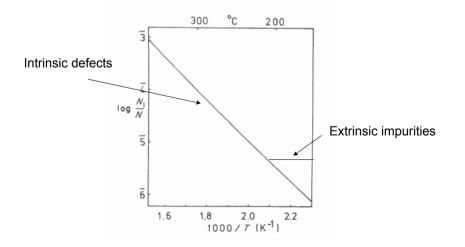
$$= Ce^{(-\Delta H/RT)}e^{(\Delta S/R)}$$

$$N \cong N - N_V \implies N_V \cong N\sqrt{K}$$

$$N = N Ce^{(-\Delta H/2RT)}$$

Kroger-Vink notation

Each defect is represented by a combination of three symbols:


$$X_{i,s,X,Y}^{\bullet(+1),x(0),'(-1)} \quad Na_{Na}^{x} \quad V_{Na}^{'} \quad Ag_{i}^{\bullet}$$

Scottky defect

$$\mathrm{Na}_{\mathrm{Na}} + \mathrm{Cl}_{\mathrm{Cl}} + \mathrm{V}_{\mathrm{Na},\mathrm{S}} + \mathrm{V}_{\mathrm{Cl},\mathrm{S}} \Leftrightarrow \mathrm{V}_{\mathrm{Na}}^{'} + \mathrm{V}_{\mathrm{Cl}}^{\bullet} + \mathrm{Na}_{\mathrm{Na},\mathrm{S}} + \mathrm{Cl}_{\mathrm{Cl},\mathrm{S}}$$

Thermodynamics

$$\log_{10}(N_i/N) = \log_{10}(\text{constant}) - (\Delta H/2RT)\log_{10}e$$

Colour centre, (alkaline halides)

The (100) for NaCl-type structure

Electron in a box, paramagnetic moment F-centre Colour from F-centre: Dependant om host lattice LiCl 3.1 eV NaCl 2.7 eV KCl 2.2 eV RbCl 2.0 eV $Cl_{Cl}^{-} + V_{Na}^{S'} + V_{Cl}^{S\bullet} + Na \Leftrightarrow e_{Cl}^{-} + Na_{Na}^{S,+} + Cl_{Cl}^{S,-}$

Colour:

MX-perfect MX ordinary defects (intrinsic) Chemical impurities (extrinsic) Radiation Treatment with extra M

colourless colourless colour colour colour

Non-stoichiometric compounds

Non-stoichiometric compounds

"TiO"	0.65 < x < 1.25
"TiO ₂ "	1.998 < x < 2.000
"VO"	0.79 < x < 1.29
"MnO"	0.848 < x< 1.000
"NiO"	0.999 < x < 1.000
	0.2 < x < 0.33
	"TiO ₂ " "VO" "MnO"

Stoichiometry

Many solid materials are non-stoichiometric – all that really matters is charge balance

Non-stoichiometry is common amongst transition metal compounds

- Fe_xO where 0.957 > x > 0.833- YBa₂Cu₃O_{7-x}, 1 > x > 0

Non-stoichiometry can control properties

Non-stoichiometric compounds

Table 5.5 Approximate composition ranges for some non-stoichiometric compounds

Compound		Composition range*
TiO _x	[≈TiO]	0.65 < x < 1.25
	[≈TiO ₂]	1.998 < x < 2.000
VO _x	[≈V0]	0.79 < x < 1.29
Mn_xO	[≈MnO]	0.848 < x < 1.000
Fe _x O	[≈FeO]	0.833 < x < 0.957
Co _x O	[≈CoO]	0.988 < x < 1.000
Ni _x O	[≈NiO]	0.999 < x < 1.000
CeO _x	Ì≈Ce2O3]	1.50 < x < 1.52
ZrO_x	[≈ZrO ₂]	1.700 < x < 2.004
UOr	Ì≈UO ₂]	1.65 < x < 2.25
$Li_x V_2 O_5$	(1)	0.2 < x < 0.33
Li _x WO ₃		0 < x < 0.50
TiS,	[≈TiS]	0.971 < x < 1.064
Nb _x S	[≈NbS]	0.92 < x < 1.00
Y _x Se	≈YSe	1.00 < x < 1.33
$V_x Te_2$	[≈VTe ₂]	1.03 < x < 1.14

* Note that all composition ranges are temperature-dependent and the figures here are intended only as a guide.

Aliovalent substitution

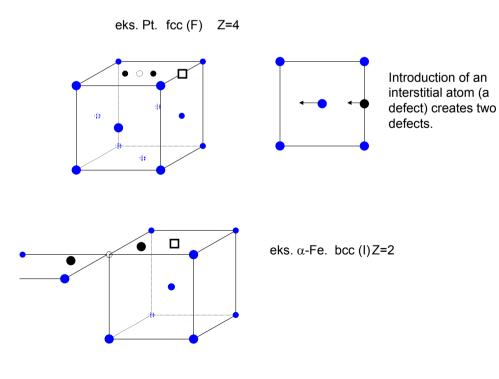
Extrinsic defects arise on doping pure crystals with aliovalent impurities

NaCl may be doped with CaCl₂ to give:

 $Na_{1-2x}Ca_{x}V_{Na_{x}}Cl$

Defect clustering

Defects have effective charge


Defects do perturb the host structure

Some interactions	"neutral pairs"	
More interactions	"defect clusteri	

"defect clustering"

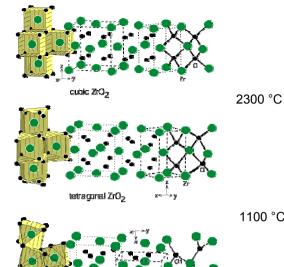
Loads of interaction

Stable phases with ordered distribution of defects

Wüstite

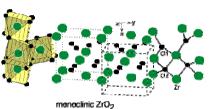
Fe_{1-x}O

 $Fe_{1-x}V_{x}O$


Fe^{II}+Fe^{III}

13:4 defects:interstitial

0:Fe Fe:O ratio ratio		Lattice	Observed	Theoretical density		O ccp oxide ions
	runo	parameter densit (pm)	density	Interstitial O	Fe vacancies	 Vacant octahedral sites Fe³⁺ in tetrahedral sites
1.058	0.945	430.1	5.728	6.076	5.742	
1.075	0.930	429.2	5.658	6.136	5.706	
1.087	0.920	428.5	5.624	6.181	5.687	
1.099	0.910	428.2	5.613	6.210	5.652	
лоеге	u on a sir	all Scale.				wüstite, Fe _{1-x} O
-	g-range o					
		uer	4	:1		
(SRO vs. LRO)			8	:3		
			1	3:4		


16:5 Structur element in Fe₃O₄

Addition of Ca, Y, Ce or similar may stabilise the high temperature forms to lower temperatures.

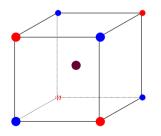
 $Ca_x^{2+}Zr_{1-x}^{4+}O_{2-x}$

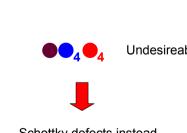
1100 °C

Interactions with other pairs defect clusters

Defects are ascribed effective charges

Interactions

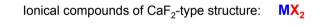

"neutral pair"

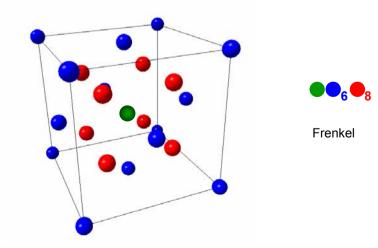

+

Smaller areas with ordered defect structures Predecessor for stable phases with ordering of defects and atoms

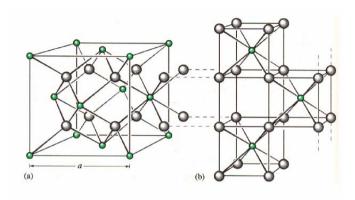
Dominating effect

Ionical compounds of NaCI-type structure: MX Regard 1/8 th of the unit cell:



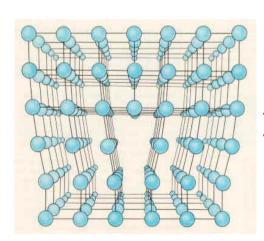

If Frenkel defect, then filled tetrahedra possition.

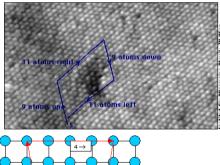
Undesireable

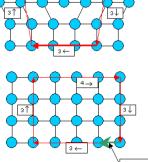

Schottky defects instead

Dominating effect

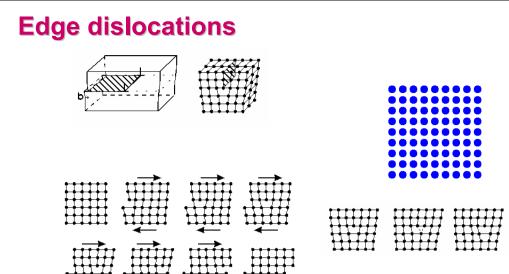
The fluorite structure

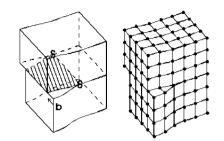


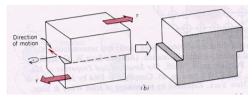

 $\mathrm{UO}_{2^{+}x}$ incorporates interstitial oxygen


Compound	Str. type	Dominating defect
Alkali-halides	NaCI – t. str.	Schottky
Earth alkali halides	NaCI – t. str.	Schottky
AgCl, AgBr	NaCI – t. str.	Cation Frenkel
Cs-halides, TICI	CsCl – t. str.	Schottky
BeO	würtsite	Schottky
Earthalkali-fluorides, CeO ₂ , ThO ₂	fluorite – t. str.	Anion Frenkel

Edge dislocations

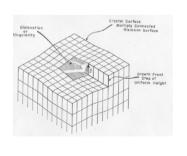




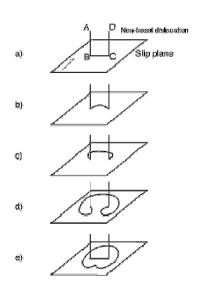


Burgers vector, $\mathbf{b} = \underbrace{1}_{\mathbf{b}}$

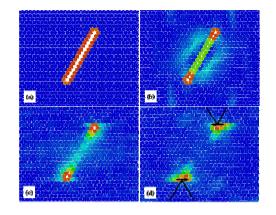


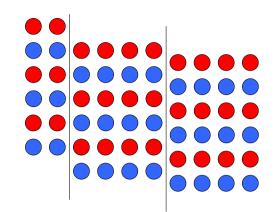

Screw dislocations

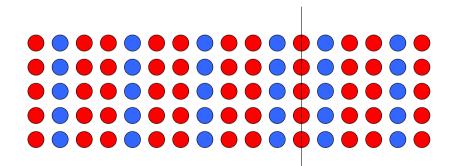
Screw dislocations

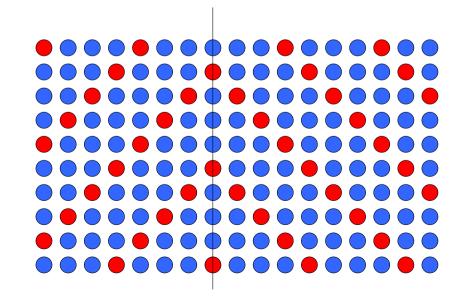


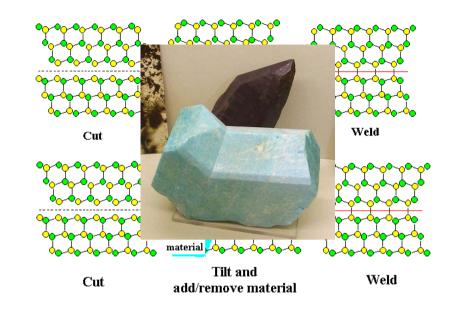
Screw dislocation at surface of SiC single crystal. Dark lines are individual atomic steps at the surface. (Fig. 5.3-2 in Schaffer et al.)


Dislocation loop

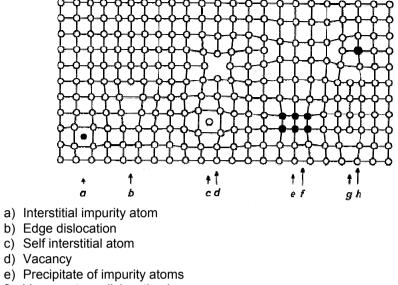

A Frank-Read source for the multiple initiation of dislocation loops. A dislocation is pinned in the basal plane at two ends by either impurities or an immobile non-basal dislocation. If a shear stress is resolved onto the basal plane, the dislocation line becomes unstable and begins to bow. With increasing stress, the line bows back onto itself to produce a new loop that is free to propagate, and a section that remains pinned which may initiate more loops.


Formation of dislocations


Antiphase



Shear plane



Twin plane

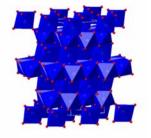
Solutions

- f) Vacancy type dislocation loop
- g) Interstitial type dislocation loop
- h) Substitutional impurity atom

Solution

Intrinsic defects associated with stoichiometric and pure crystals Extrinsic defects associated with dopants or impurities (0.1 - 1 %)

What about dopants > 1% ???



Substitutional solid solution Interstitial solid solution

Aliovalent substitution

Substitutional solid solution

Cr₂O₃ corundum

Al₂O₃ corundum

 $(Al_{2}, Cr_{1})O_{3}$ corundum

AI³⁺ covalent radius 1.18 Å

Substitutional solid solution

For substitutional solid solution to form:

The ions must be of same charge

The ions must be similar in size. (For metal atoms < 15% difference) (a bit higher for non-metals)

High temperature helps – increase in entropy $(0 > \Delta H vs. 0 < \Delta H)$

The crystal structures of the end members must be isostructural for complete solid solubility

Partial solid solubility is possible for non-isostructural end members Mg_2SiO_4 (Mg in octahedras) - Zn_2SiO_4 (Zn in tetrahedras)

Preference for the same type of sites Cr³⁺ only in octahedral sites, Al³⁺ in both octahedra and tetraheda sites $LiCrO_2 - LiCr_{1-x}Al_xO_2 - LiAlO_2$

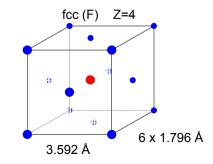
Consider metallic alloys

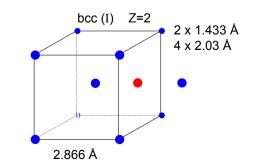
Interstitial solid solution

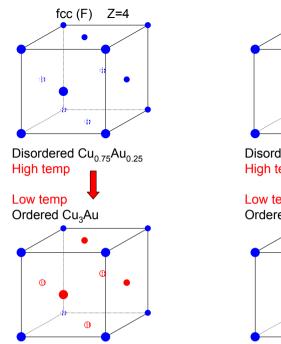
Atoms enters intersitital positions in the host structure.

The host structure may be expanded but not altered.

H₂ in Pt


Interstitial solid solution


Fe-C system


δ-Fe (bcc) -> 0.1 % C Tm = 1534 °C

γ-Fe (fcc) -> 2.06 % C < 1400 °C

α-Fe (bcc) -> 0.02 % C < 910 °C

bcc (I) Z=2 Disordered Cu_{0.50}Au_{0.50} High temp Ordered CuAu

Aliovalent substitution

(1) Cation vacancies, Substitution by higher valence

Preserve charge neutrality by leaving out more cations than those that are replaced.

NaCl dissolves $CaCl_2$ by: $Na_{1-2x}Ca_xV_xCl$

 Ca^{2+} vil have a net excess charge of +1 in the structure and attract Na^+ vacancies which have net charge -1

 Mg^{2+} may be replaced by AI^{3+} : $Mg_{1-3x}AI_{2+2x}V_xO_4$

Aliovalent substitution

Substitution with ions of different charge

Need charge compensation mechanism

Substitution by higher valence cations

2

Cation vacancies

Interstitial anions

Substitution by lower valence cations

\ 4

Aliovalent substitution

(2) Interstitial anions, Substitution by higher valence

Preserve charge neutrality by inserting more anions interstitially.

Not common mechanism due to the large size of the anions.

 CaF_2 may dissolve some YF_3 : $Ca_{1-x}Y_xF_{2+x}$

Aliovalent substitution

(3) Anion vacancies, Substitution by lower valence

Preserve charge neutrality by leaving out anions as cations are replaced.

 ZrO_2 dissolve CaO by anion vacancies : $Zr_{1-x}Ca_xO_{2-x}V_x$

Aliovalent substitution

(4) Interstitial cations, Substitution by lower valence

Preserve charge neutrality by inserting more cations interstitially, not necessarily of same kind.

Common mechanism

Must be holes present to accomodate additional atoms

Si⁴⁺ can be replaced by Al³⁺ and interstitial Li⁺ Li_x(Al_{1-x}Al_x)O₂

Aliovalent substitution

(5) Double substitution

Two substitutions take place simultaneously

In olivines, Mg²⁺ can be replaced by Fe²⁺ at the same time as Si⁴⁺ is replaced by Ge⁴⁺

(Mg_{2-x}Fe_x)(Si_{1-y}Ge_y)O₄

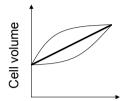
Aliovalent substitution

6 Charge compensations

Cations or anions may be inserted/removed from the structure and compensated by reduction/oxidation of the catons in the structure.

 Li^+ in $LiCoO_2$, or $LiMn_2O_4$

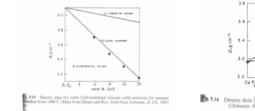
 $\begin{array}{c} Li_{1\text{-}x}Co^{3\text{+}}{}_{1\text{-}x}Co^{4\text{+}}O_2\\ Li_{1\text{-}x}Mn^{3\text{+}}{}_{1\text{-}x}Mn^{4\text{+}}{}_{1\text{+}x}O_4 \end{array}$

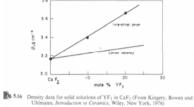

NiO takes up additional oxygen by formation of cation vacancies

 $NiO + O_2 \rightarrow Ni^{2+}_{1-3x}Ni^{3+}_{2x}V_{Ni,x}O$

How to analyze solid solution

X-ray diffraction

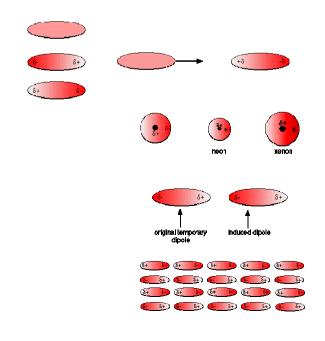

- Fingerprint to analyze end members
- Vegards law to analyze composition



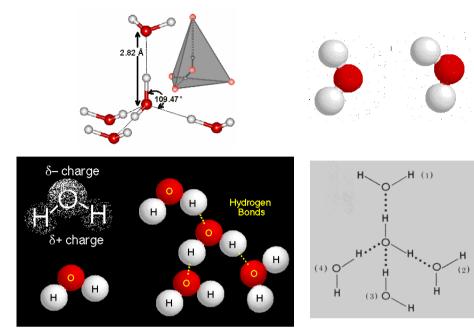
States

Composition

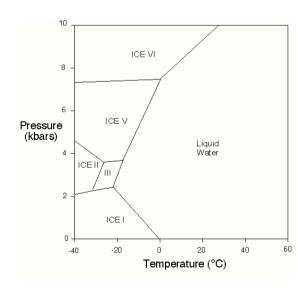
Density measurements - Will differensiate between interstitial and vacancy mechanisms

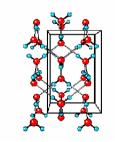


Chemical bonds

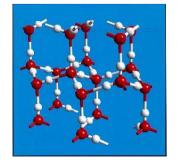

Type of bond	Approximate energy/kJ mol ⁻¹	Species involved
Covalent	350	Atoms with partly filled orbitals
Ionic	250	Ions only
Metal	200	Metal atoms
Ion-dipole	15	Ions and polar molecules
Dipole-dipole	2	Stationary polar molecules
Dipole-dipole	0.3	Rotating polar molecules
Dispersion	2	All atoms and molecules
Hydrogen bond	20	N, O or F plus H

$$V(r) = 4V_{\min}\left[\left(\frac{r_0}{r}\right)^6 - \left(\frac{r_0}{r}\right)^{12}\right]$$

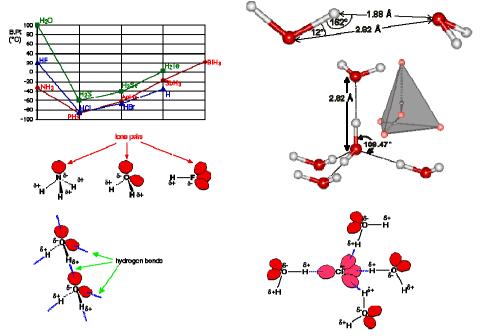

Van der Waals interactions

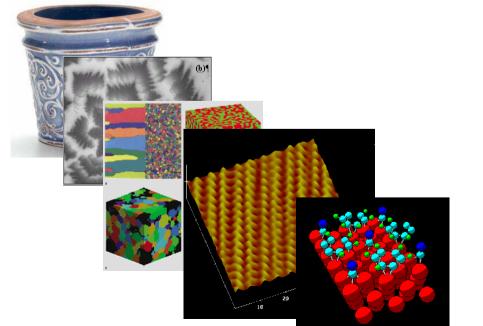


Hydrogen bonds

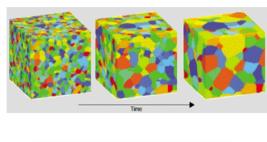


Polymorphism



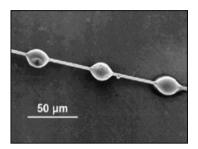

Ice VIII

Hydrogen bonds



Macrostructure -> Microstructure

Crystal - amorphous



Funtional material

PbSe Q-dot size series photoluminescence spectr 1.4 um 1.56 um 1.82 u

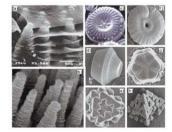
Low-resolution TEM images of monodisperse PbSe spheres, rounded cubes, and cubes

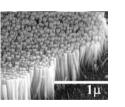
1.4 1.6 Wavelength (μm)

Hi-resolution TEM images of PbSe Q-dots

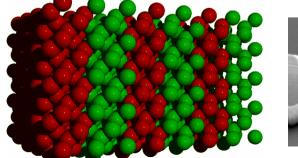
PbSe Nanocrystals

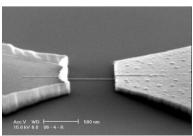
Epitaxially fused Rounded PbSe cubes Faceted rocksalt crystal Q-dot pair

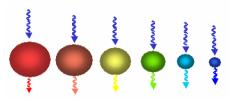

Size and shape control in PbSe growth is achieved by controlling temperature, reaction time, solvent/stabilizer identity, and precursor concentration. Preparations are based on modifications of:

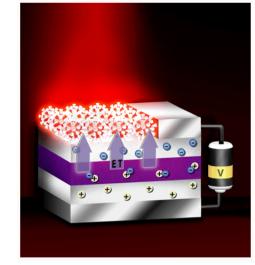

C. B. Murray, et al. IBM Journal of Research and Development 45, 47 (2001) and B. L. Wehrenberg, C. J. Wang, and P. Guyot-Sionnest J. Phys. Chem. B 106, 10634 (2002)

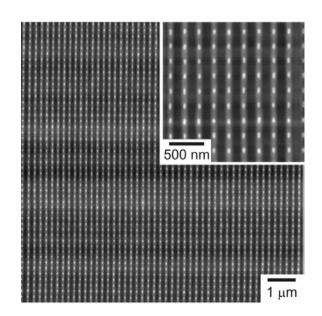
Emission wavelengths important for the telecommunications industry (1.3 and 1.5 µm) are easily achieved with Q-dot photoluminescence quantum yields as high as ~80%.


PbSe cube and wire comprising oriented fused cubes


Nanostructures







Nanocrystals absorb light then re-emit the light in a different color – the size of the nanocrystal (at the Angstrom scale) determines the color

Six different quantum dot solutions are shown excited with a long wave UV lamp

