Kap. 3 **States of aggregation**

of aggregation aggregation **Defects Defects**

Perfect Perfect Crystal Crystal

•A perfect crystal with every atom in the correct A perfect crystal with every atom in the correct position does not exist. Only a hypothetical situation at $0 K$

 \cdot Crystals are like people: it is the defects in them which tend to make them interesting!" - Colin **Humphreys**

•Most materials properties are determined by the crystal defects present.

Defects Defects

Thermodynamics Thermodynamics

Scottky defect

$$
Na_{\text{Na}} + Cl_{\text{Cl}} + V_{\text{Na},S} + V_{\text{Cl},S} \Leftrightarrow V_{\text{Na}}^{'} + V_{\text{Cl}}^{\bullet} + Na_{\text{Na},S} + Cl_{\text{Cl},S}
$$

Constant

$$
K = \frac{\begin{bmatrix} V_{Na} \end{bmatrix} V_{Cl} \begin{bmatrix} N a_{Na,S} \end{bmatrix} C l_{Cl,S} \end{bmatrix}}{\begin{bmatrix} Na_{Na} \end{bmatrix} C l_{Cl} \begin{bmatrix} V_{Na,S} \end{bmatrix} V_{Cl,S} \end{bmatrix}}
$$

Constant

$$
K = \frac{(N_{V})^{2}}{(N - N_{V})^{2}}
$$

N \cong N - N_{V} \implies N_{V} \cong N\sqrt{K}

$$
K \propto e^{(-\Delta G/RT)}
$$

\n
$$
K \propto e^{(-\Delta H/RT)} e^{(\Delta S/R)}
$$

\n
$$
= Ce^{(-\Delta H/RT)}
$$

\n
$$
N_V = N Ce^{(-\Delta H/2RT)}
$$

 $K = \frac{V_{\text{Na}}' V_{\text{Cl}}'}{[\text{Na}_{\text{Na}} C]_{\text{Cl}}}.$

Kroger-Vink notation notation

Each defect is represented by a combination of three symbols:

$$
X^{\bullet(+1),x(0),(-1)}_{i,s,X,Y} \quad Na^{\,x}_{\,Na} \quad V^{'}_{\,Na} \quad Ag^{\bullet}_i
$$

Scottky defect

$$
Na_{\text{Na}} + Cl_{\text{Cl}} + V_{\text{Na},S} + V_{\text{Cl},S} \Leftrightarrow V_{\text{Na}}^{'} + V_{\text{Cl}}^{'} + Na_{\text{Na},S} + Cl_{\text{Cl},S}
$$

Thermodynamics Thermodynamics

$$
log_{10}(N_i/N) = log_{10}(constant) - (\Delta H/2RT)log_{10}e
$$

Colour centre, (alkaline halides) centre, (alkaline halides)

The (100) for NaCl-type structure H-centreV-centre

Electron in a box, paramagnetic moment F-centre**Colour from F-centre:Dependant om host lattice LiCl 3.1 eVNaCl 2.7 eVKCl 2.2 eVRbCl 2.0 eV** $Cl_{Cl}^- + V_{Na}^{S^*} + V_{Cl}^{S^*} + Na \Longleftrightarrow e_{Cl}^- + Na_{Na}^{S,+} + Cl_{Cl}^{S,-}$

Colour:

MX-perfect colourless MX ordinary defects (intrinsic) colourless Chemical impurities (extrinsic) colour Radiation colourTreatment with extra M colour

Non-stoichiometric stoichiometric

Non-stoichiometric compounds

Stoichiometry Stoichiometry

Many solid materials are non-stoichiometric – all that really matters is charge balance

Non-stoichiometry is common amongst transition metal compounds – Fe_xO where 0.957 > x > 0.833

– YBa₂Cu₃O_{7-x}, 1 > x > 0

Non-stoichiometry can control properties

compounds compounds Non-stoichiometric stoichiometric compounds compounds

Table 5.5 Approximate composition ranges for some non-stoichiometric compounds

*Note that all composition ranges are temperature-dependent and the figures here are intended only as a guide.

Aliovalent Aliovalent substitution substitution

Extrinsic defects arise on doping pure crystals with aliovalent impurities

NaCl may be doped with CaCl2 to give:

$$
Na_{1-2x}Ca_xV_{Na_x}Cl
$$

Defect clustering Defect clustering

Defects have effective charge

Defects do perturb the host structure

More interactions "defect clustering"

Loads of interaction Stable phases with ordered distribution of defects

Wüstite

 $Fe_{1-x}O$

FeII+FeIII

16:5 Structur element in $Fe₃O₄$

13:4

Addition of Ca, Y, Ce or similar may stabilise the high temperature forms to lower temperatures.

 $\text{Ca}_{\textsf{x}}{}^{2+}\text{Zr}_{1\text{-x}}{}^{4+}\text{O}_{2\text{-x}}$

Interactions with other pairs defect clustersSmaller areas with ordered defect structuresPredecessor for stable phases with ordering of defects and atoms

Defects are ascribed effective charges

Interactions "neutral pair"

-

+

Dominating effect Dominating effect

Ionical compounds of NaCl-type structure: **MX**

Regard 1/8 th of the unit cell:

If Frenkel defect, then filled tetrahedra possition.

Schottky defects instead

Dominating effect Dominating effect

The fluorite structure The fluorite structure

UO $_{\text{2+x}}$ incorporates interstitial oxygen

Edge dislocations

Line defects defects

Burgers vector, $\mathbf{b} = \xleftarrow{1}$

Screw dislocations dislocations

A Frank-Read source for the multiple **Dislocation Dislocation loop**

initiation of dislocation loops. A dislocation is pinned in the basal plane at two ends by either impurities or an immobile non-basal dislocation. If a shear stress is resolved onto the basal plane, the dislocation line becomes unstable and begins to bow. With increasing stress, the line bows back onto itself to produce a new loop that is free to propagate, and a section that remains pinned which may initiate more loops.

Screw dislocation at surface of SiC single crystal. Dark lines are individual atomic steps at the surface. (Fig. 5.3-2 in Schaffer et al.)

Formation Formation of dislocations dislocations Antiphase Antiphase

Shear

$\bullet\bullet\bullet\bullet$ \bigcirc \bullet \circ $\bullet \bullet \circ$ \bullet \circ \Box () \blacksquare D $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

plane Twin plane

Solutions Solutions

- f) Vacancy type dislocation loop
- g) Interstitial type dislocation loop
- h) Substitutional impurity atom

Solution Solution

Intrinsic defects associated with stoichiometric and pure crystals Extrinsic defects associated with dopants or impurities (0.1 – 1 %)

What about dopants > 1% ???

Substitutional Substitutionalsolid solution

Interstitial Interstitial solid solution

Aliovalent Aliovalentsubstitution

Substitutional Substitutional solid solution solution

 $\mathrm{Al}_2\mathrm{O}_3$ corundum

 $\left(AI_{2-x}Cr_{x}\right)O_{3}$ corundum $Cr_{2}O_{3}$ corundum

Al3+ covalent radius 1.18 Å

Substitutional Substitutional solid solution solution

For substitutional solid solution to form:

The ions must be of same charge

The ions must be similar in size.(For metal atoms < 15% difference) (a bit higher for non-metals)

High temperature helps – increase in entropy $(0 > ∆H$ vs. $0 < ∆H$)

The crystal structures of the end members must be isostructural for complete solid solubility

Partial solid solubility is possible for non-isostructural end members Mg $_2$ SiO $_4$ (Mg in octahedras) - Zn $_2$ SiO $_4$ (Zn in tetrahedras)

Preference for the same type of sites Cr^{3+} only in octahedral sites, Al^{3+} in both octahedra and tetraheda sites LiCrO $_2$ - LiCr $_{\text{1-x}}$ Al $_{\text{x}}$ O $_2$ - LiAlO $_2$

Consider metallic alloys

Interstitial Interstitial solid solution solution

Atoms enters intersitital positions in the host structure.

The host structure may be expanded but not altered.

 ${\sf H}_2$ in Pt

Interstitial Interstitial solid solution solution

Fe-C system

δ**-Fe (bcc) -> 0.1 % C Tm = 1534 °C**

γ**-Fe (fcc) -> 2.06 % C < 1400 °C**

^α**-Fe (bcc) -> 0.02 % C < 910 °C**

Aliovalent Aliovalent substitution substitution

1 Cation vacancies, Substitution by higher valence

Preserve charge neutrality by leaving out more cations than those that are replaced.

NaCl dissolves CaCl2 by: Na1-2xCax*V***xCl**

Ca2+ vil have a net excess charge of +1 in the structure and attract Na+ vacancies which have net charge -1

 Mg^{2+} may be replaced by Al^{3+} **:** $Mg_{1-3x}Al_{2+2x}V_xO_4$

Aliovalent Aliovalent substitution substitution

Substitution with ions of different charge

Need charge compensation mechanism

Substitution by higher valence cations

2

Cation vacancies

1

Interstitial anions

Substitution by lower valence cations

Anion vacancies

Interstitial cations

Aliovalent Aliovalent substitution substitution

2 Interstitial anions, Substitution by higher valence

Preserve charge neutrality by inserting more anions interstitially.

Not common mechanism due to the large size of the anions.

CaF2 may dissolve some YF3 : Ca1-xYxF2+x

Aliovalent Aliovalent substitution substitution

3 Anion vacancies, Substitution by lower valence

Preserve charge neutrality by leaving out anions as cations are replaced.

ZrO2 dissolve CaO by anion vacancies : Zr1-xCaxO2-x*V***^x**

Aliovalent Aliovalent substitution substitution

4 Interstitial cations, Substitution by lower valence

Preserve charge neutrality by inserting more cations interstitially, not necessarily of same kind.

Common mechanism

Must be holes present to accomodate additional atoms

Si4+ can be replaced by Al3+ and interstitial Li+ $Li_x(Al_{1-x}Al_x)O₂$

Aliovalent Aliovalent substitution substitution

5 Double substitution

Two substitutions take place simultaneously

In olivines, Mg2+ can be replaced by Fe2+ at the same time as Si4+ is replaced by Ge4+

 $(Mg_{2-x}Fe_{x})(Si_{1-y}Ge_{y})O_{4}$

Aliovalent Aliovalent substitution substitution

6 Charge compensations

Cations or anions may be inserted/removed from the structure and compensated by reduction/oxidation of the catons in the structure.

Li⁺ in LiCoO₂, or LiMn₂O₄

Li_{1-x}Co³⁺_{1-x}Co⁴⁺O₂
Li_{1-x}Mn³⁺1-x^{Mn4+}1+xO₄

NiO takes up additional oxygen by formation of cation vacancies

NiO + O $_2$ \rightarrow Ni $^{2+}$ _{1-3x}Ni $^{3+}$ _{2x}V_{Ni,x}O

How to analyze analyze solid solution solution

X-ray diffraction

- Fingerprint to analyze end members
- Vegards law to analyze composition

States

Density measurements

- Will differensiate between interstitial and vacancy mechanisms

25.16 Density data for solid solutions of YF₃ in CaF₂ (From Kingery, Bowen and Uhlmann, *Introduction to Ceramics*, Wiley, New York, 1976)

Chemical Chemical bonds

$$
V(r) = 4V_{\min}\left[\left(\frac{r_0}{r}\right)^6 - \left(\frac{r_0}{r}\right)^{12}\right]
$$

Van der Waals interactions

Ice VIII

Hydrogen Hydrogen bonds Hydrogen Hydrogen bonds

Polymorphism Macrostructure -> Microstructure

Crystal Crystal - amorphous amorphous Funtional Funtional material material

Nanostructures Nanostructures

Size and shape control in PbSe growth is achieved by controlling temperature, reaction time, solvent/stabilizer identity, and precursor concentration. Preparations are based on modifications of:

C. B. Murray, et al. IBM Journal of Research and Development 45, 47 (2001) and B. L. Wehrenberg, C. J. Wang, and P. Guyot-Sionnest J. Phys. Chem. B 106, 10634 (2002)

Emission wavelengths important for the telecommunications industry (1.3 and 1.5 μ m) are easily achieved with Q-dot photoluminescence quantum yields as high as ~80%.

PbSe cube and wire comprising oriented fused cubes

Nanocrystals absorb light then re-emit the light in a different color $-\overline{ }$ the size of the nanocrystal (at the Angstrom scale) determines the color

Six different quantum
dot solutions are shown excited with a long wave UV lamp

